Groupwise regional analysis
From CMIC
Revision as of 16:40, 13 November 2015 by Martina.bocchetta (Talk | contribs) (Created page with "<pre> perform_dti_regional.py [-h] [--input_dir input_dir | --input_img input_img [input_img ...]] [--rigid_it nu...")
perform_dti_regional.py [-h] [--input_dir input_dir | --input_img input_img [input_img ...]] [--rigid_it number] [--affine_it number] [--nonrigid_it number] [--in_atlas_template_fa file] [--in_atlas_template_labels file] -o output_dir [-g] This workflow takes multiple diffusion tensor images as input. It performs a groupwise registration using the DTI-TK toolkit (http://dti- tk.sourceforge.net) The JHU atlas Fractional Anisotropy (FA) image of the atlas (or the atlas image provided) is then registered to the groupwise FA and the atlas labels are propagated in the groupwise space The pipeline exports diffusion based biomarkers (i.e. FA, MD, RD, AD) mean and standard deviations for each region and each subject present as input optional arguments: -h, --help show this help message and exit --input_dir input_dir Input directory containing the Nifti file(s) to include in the processing --input_img input_img [input_img ...] List of Nifti file(s) to include in the processing --rigid_it number Number of iteration to perform for the rigid step (default is 3) --affine_it number Number of iteration to perform for the affine step (default is 3) --nonrigid_it number Number of iteration to perform for the nonrigid step (default is 6) --in_atlas_template_fa file The atlas FA to use for regional statistics --in_atlas_template_labels file The atlas label image to use for regional statistics -o output_dir, --output_dir output_dir Output directory where to save the results -g, --graph Print a graph describing the node connections and exit