Cross-sectional TBSS
The nipype script to perform cross-sectional TBSS is called perform_dti_tbss_cross_sectional.py
This pipeline is to replicate the work presented in the following paper: Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., Zhang, H., et al. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996. doi:10.1371/journal.pone.0045996
The script help returns:
usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img [input_img ...] --mat design_mat --con design_con -o output_dir [--output_pre prefix] [-g] Cross-section TBSS pipeline. The required input are the tensor images and the design matrix and contrast. The input images can be specified using the --input_img argument. The design matrix (--mat) and contrast (--con) can be generated as described on this page: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM with the Glm_gui executable. Note that the file order has to match the design matrix. The user also need to specify an output directory (--output_dir) where all the result files will be saved. Using the --g argument you can generate the pipeline graph without running the actual pipeline. optional arguments: -h, --help show this help message and exit --input_img input_img [input_img ...] List of Nifti file(s) to include in the analysis --no_randomise The script exists before the statistical analysis step --mat design_mat Design matrix file to be used by randomised --con design_con Design contrast file to be used by randomised -o output_dir, --output_dir output_dir Output directory where to save the results --output_pre prefix Output result prefix (default='tbss_') -g, --graph Print a graph describing the node connections and exit
As an input, the script expects several DTI images, e.g. /folder/DTI_img0.nii.gz, /folder/DTI_img1.nii.gz, ..., /folder/DTI_imgN.nii.gz. The script also expect the design matrix and design contrast file generated as described in [1] with the Glm_gui
executable.
The generated files will be store in the folder specified by the --output_dir
option.
By default, all generated files will have the tbss_
prefix. This prefix can be altered using the --output_pre
option.
A typical example application can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --mat /folder/path/design_matrix.mat \ --con /folder/path/design_contrast.con
Note that if the --no_randomise
option is specified the --mat
and --con
options do not required to be specified. In this case, a typical command can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --no_randomise
The output, if the design contrast and matrix are specified, encompass:
- <prefix>template_fa.nii.gz -- Average FA map use as a template for the TBSS analysis
- <prefix>skeleton.nii.gz -- Binary skeleton of the average FA map
- <prefix>all_fa.nii.gz -- 4D image containing all FA maps masked using the template skeleton
If the --no_randomise
option is used, the outputs are:
- <prefix>template_fa.nii.gz -- Average FA map use as a template for the TBSS analysis
- <prefix>skeleton.nii.gz -- Binary skeleton of the average FA map
- <prefix>all_fa.nii.gz -- 4D image containing all FA maps masked using the template skeleton