Difference between revisions of "Cross-sectional TBSS"
Line 7: | Line 7: | ||
<pre> | <pre> | ||
usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img | usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img | ||
− | [input_img ...] --mat design_mat | + | [input_img ...] [--mat design_mat] |
− | --con design_con -o output_dir | + | [--con design_con] [-o output_dir] |
− | [--output_pre prefix] [-g] | + | [--output_pre prefix] |
+ | [--no_randomise] [-g] | ||
− | Cross-section TBSS pipeline. The required input are the tensor images and the | + | Cross-section TBSS pipeline (as described in 10.1371/journal.pone.0045996). |
− | design matrix and contrast. The input images can be specified using the | + | The required input are the tensor images and the design matrix and contrast. |
− | --input_img argument. The design matrix (--mat) and contrast (--con) can be | + | The input images can be specified using the --input_img argument. The design |
− | generated as described on this page: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM | + | matrix (--mat) and contrast (--con) can be generated as described on this |
− | with the Glm_gui executable. Note that the file order has to match the design | + | page: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM with the Glm_gui executable. |
− | matrix. The user also need to specify an output directory (--output_dir) where | + | Note that the file order has to match the design matrix. The user also need to |
− | all the result files will be saved. Using the --g argument you can generate | + | specify an output directory (--output_dir) where all the result files will be |
− | the pipeline graph without running the actual pipeline. | + | saved. Using the --g argument you can generate the pipeline graph without |
+ | running the actual pipeline. | ||
optional arguments: | optional arguments: | ||
Line 24: | Line 26: | ||
--input_img input_img [input_img ...] | --input_img input_img [input_img ...] | ||
List of Nifti file(s) to include in the analysis | List of Nifti file(s) to include in the analysis | ||
− | + | --mat design_mat Design matrix file to be used by randomised on the | |
− | --mat design_mat Design matrix file to be used by randomised | + | skeletonised FA maps. Required to run the statistical |
− | --con design_con Design contrast file to be used by randomised | + | analysis |
+ | --con design_con Design contrast file to be used by randomised on the | ||
+ | skeletonised FA maps. Required to run the statistical | ||
+ | analysis | ||
-o output_dir, --output_dir output_dir | -o output_dir, --output_dir output_dir | ||
Output directory where to save the results | Output directory where to save the results | ||
--output_pre prefix Output result prefix (default='tbss_') | --output_pre prefix Output result prefix (default='tbss_') | ||
+ | --no_randomise Do not perform the randomise test on the skeletonised | ||
+ | FA maps (permutation test) | ||
-g, --graph Print a graph describing the node connections and exit | -g, --graph Print a graph describing the node connections and exit | ||
</pre> | </pre> | ||
Line 60: | Line 67: | ||
The output, if the design contrast and matrix are specified, encompass: | The output, if the design contrast and matrix are specified, encompass: | ||
− | * <prefix> | + | * <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK |
− | * <prefix> | + | * <prefix>fa_skeleton.nii.gz -- Binary skeleton of the mean FA map |
− | * <prefix> | + | * <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton |
+ | * <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | ||
+ | * <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | ||
+ | * <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton | ||
* TBSS outputs | * TBSS outputs | ||
If the <code>--no_randomise</code> option is used, the outputs are: | If the <code>--no_randomise</code> option is used, the outputs are: | ||
− | * <prefix> | + | * <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK |
− | * <prefix> | + | * <prefix>fa_skeleton.nii.gz -- Binary skeleton of the mean FA map |
− | * <prefix> | + | * <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton |
+ | * <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | ||
+ | * <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | ||
+ | * <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton |
Revision as of 15:54, 24 August 2015
The nipype script to perform cross-sectional TBSS is called perform_dti_tbss_cross_sectional.py
This pipeline is to replicate the work presented in the following paper: Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., Zhang, H., et al. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996. doi:10.1371/journal.pone.0045996
The script help returns:
usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img [input_img ...] [--mat design_mat] [--con design_con] [-o output_dir] [--output_pre prefix] [--no_randomise] [-g] Cross-section TBSS pipeline (as described in 10.1371/journal.pone.0045996). The required input are the tensor images and the design matrix and contrast. The input images can be specified using the --input_img argument. The design matrix (--mat) and contrast (--con) can be generated as described on this page: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM with the Glm_gui executable. Note that the file order has to match the design matrix. The user also need to specify an output directory (--output_dir) where all the result files will be saved. Using the --g argument you can generate the pipeline graph without running the actual pipeline. optional arguments: -h, --help show this help message and exit --input_img input_img [input_img ...] List of Nifti file(s) to include in the analysis --mat design_mat Design matrix file to be used by randomised on the skeletonised FA maps. Required to run the statistical analysis --con design_con Design contrast file to be used by randomised on the skeletonised FA maps. Required to run the statistical analysis -o output_dir, --output_dir output_dir Output directory where to save the results --output_pre prefix Output result prefix (default='tbss_') --no_randomise Do not perform the randomise test on the skeletonised FA maps (permutation test) -g, --graph Print a graph describing the node connections and exit
As an input, the script expects several DTI images, e.g. /folder/DTI_img0.nii.gz, /folder/DTI_img1.nii.gz, ..., /folder/DTI_imgN.nii.gz. The script also expect the design matrix and design contrast file generated as described in [1] with the Glm_gui
executable.
The generated files will be store in the folder specified by the --output_dir
option.
By default, all generated files will have the tbss_
prefix. This prefix can be altered using the --output_pre
option.
A typical example application can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --mat /folder/path/design_matrix.mat \ --con /folder/path/design_contrast.con
Note that if the --no_randomise
option is specified the --mat
and --con
options do not required to be specified. In this case, a typical command can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --no_randomise
The output, if the design contrast and matrix are specified, encompass:
- <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK
- <prefix>fa_skeleton.nii.gz -- Binary skeleton of the mean FA map
- <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton
- <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton
- <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton
- <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton
- TBSS outputs
If the --no_randomise
option is used, the outputs are:
- <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK
- <prefix>fa_skeleton.nii.gz -- Binary skeleton of the mean FA map
- <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton
- <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton
- <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton
- <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton