Difference between revisions of "Cross-sectional TBSS"
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | |||
This pipeline is to replicate the work presented in the following paper: | This pipeline is to replicate the work presented in the following paper: | ||
[http://doi.org/10.1371/journal.pone.0045996 Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., Zhang, H., et al. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996. doi:10.1371/journal.pone.0045996] | [http://doi.org/10.1371/journal.pone.0045996 Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., Zhang, H., et al. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996. doi:10.1371/journal.pone.0045996] | ||
+ | |||
+ | __FORCETOC__ | ||
+ | |||
+ | <h1>How to run the cross-sectional TBSS pipeline</h1> | ||
+ | The nipype script to perform cross-sectional TBSS is called <code>perform_dti_tbss_cross_sectional.py</code>. | ||
+ | To use this script [[Prerequisite DTI-TK | DTI-TK has to be installed]] | ||
The script help returns: | The script help returns: | ||
Line 8: | Line 12: | ||
usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img | usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img | ||
[input_img ...] [--mat design_mat] | [input_img ...] [--mat design_mat] | ||
− | [--con design_con] [-o output_dir] | + | [--con design_con] |
+ | [--skeleton_thr thr] | ||
+ | [-o output_dir] | ||
[--output_pre prefix] | [--output_pre prefix] | ||
[--no_randomise] [-g] | [--no_randomise] [-g] | ||
Line 32: | Line 38: | ||
skeletonised FA maps. Required to run the statistical | skeletonised FA maps. Required to run the statistical | ||
analysis | analysis | ||
+ | --skeleton_thr thr Threshold value to use to binarise the TBSS skeleton | ||
+ | (default is 0.2) | ||
-o output_dir, --output_dir output_dir | -o output_dir, --output_dir output_dir | ||
Output directory where to save the results | Output directory where to save the results | ||
Line 43: | Line 51: | ||
Note that the order of the input diffusion tensor images has to be identical to the order specified in the design matrix and contrast. | Note that the order of the input diffusion tensor images has to be identical to the order specified in the design matrix and contrast. | ||
− | The generated files will be store in the folder specified by the <code>--output_dir</code> option. | + | The generated files will be store in the folder specified by the <code>--output_dir</code> option. By default the output will be written in the current working directory. |
+ | |||
+ | By default, a value of 0.2 is used to binarise the mean FA skeleton and create the skeleton mask required for the statistical analysis. This value can be altered by using the <code>--skeleton_thr</code> argument. | ||
By default, all generated files will have the <code>tbss_</code> prefix. This prefix can be altered using the <code>--output_pre</code> option. | By default, all generated files will have the <code>tbss_</code> prefix. This prefix can be altered using the <code>--output_pre</code> option. | ||
Line 68: | Line 78: | ||
The output, if the design contrast and matrix are specified, encompass: | The output, if the design contrast and matrix are specified, encompass: | ||
* <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK | * <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK | ||
− | * <prefix> | + | * <prefix>mean_fa_skeleton.nii.gz -- Skeleton of the mean FA map |
+ | * <prefix>mean_fa_skeleton_mask.nii.gz -- Binary skeleton of the mean FA map | ||
* <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton | * <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton | ||
* <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | * <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | ||
* <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | * <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | ||
* <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton | * <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton | ||
− | * | + | * randomise outputs |
If the <code>--no_randomise</code> option is used, the outputs are: | If the <code>--no_randomise</code> option is used, the outputs are: | ||
* <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK | * <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK | ||
− | * <prefix> | + | * <prefix>mean_fa_skeleton.nii.gz -- Skeleton of the mean FA map |
+ | * <prefix>mean_fa_skeleton_mask.nii.gz -- Binary skeleton of the mean FA map | ||
* <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton | * <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton | ||
* <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | * <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton | ||
* <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | * <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton | ||
* <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton | * <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton | ||
− | |||
Note that for all 4D images, the order of the images is identical to the order specified with the <code>--input_img</code> argument. | Note that for all 4D images, the order of the images is identical to the order specified with the <code>--input_img</code> argument. | ||
+ | |||
+ | In order to run the statistical analysis independently, see [http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide the FSL randomise user guide page]. | ||
+ | |||
+ | |||
+ | <h1>Various advices</h1> | ||
+ | Martina and Kirsi to have a go here. |
Latest revision as of 16:35, 25 August 2015
This pipeline is to replicate the work presented in the following paper: Keihaninejad, S., Ryan, N. S., Malone, I. B., Modat, M., Cash, D., Ridgway, G. R., Zhang, H., et al. (2012). The importance of group-wise registration in tract based spatial statistics study of neurodegeneration: a simulation study in Alzheimer's disease. PloS one, 7(11), e45996. doi:10.1371/journal.pone.0045996
How to run the cross-sectional TBSS pipeline
The nipype script to perform cross-sectional TBSS is called perform_dti_tbss_cross_sectional.py
.
To use this script DTI-TK has to be installed
The script help returns:
usage: perform_dti_tbss_cross_sectional.py [-h] --input_img input_img [input_img ...] [--mat design_mat] [--con design_con] [--skeleton_thr thr] [-o output_dir] [--output_pre prefix] [--no_randomise] [-g] Cross-section TBSS pipeline (as described in 10.1371/journal.pone.0045996). The required input are the tensor images and the design matrix and contrast. The input images can be specified using the --input_img argument. The design matrix (--mat) and contrast (--con) can be generated as described on this page: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM with the Glm_gui executable. Note that the file order has to match the design matrix. The user also need to specify an output directory (--output_dir) where all the result files will be saved. Using the --g argument you can generate the pipeline graph without running the actual pipeline. optional arguments: -h, --help show this help message and exit --input_img input_img [input_img ...] List of Nifti file(s) to include in the analysis --mat design_mat Design matrix file to be used by randomised on the skeletonised FA maps. Required to run the statistical analysis --con design_con Design contrast file to be used by randomised on the skeletonised FA maps. Required to run the statistical analysis --skeleton_thr thr Threshold value to use to binarise the TBSS skeleton (default is 0.2) -o output_dir, --output_dir output_dir Output directory where to save the results --output_pre prefix Output result prefix (default='tbss_') --no_randomise Do not perform the randomise test on the skeletonised FA maps (permutation test) -g, --graph Print a graph describing the node connections and exit
As an input, the script expects several DTI images, e.g. /folder/DTI_img0.nii.gz, /folder/DTI_img1.nii.gz, ..., /folder/DTI_imgN.nii.gz. The script also expect the design matrix and design contrast file generated as described in [1] with the Glm_gui
executable.
Note that the order of the input diffusion tensor images has to be identical to the order specified in the design matrix and contrast.
The generated files will be store in the folder specified by the --output_dir
option. By default the output will be written in the current working directory.
By default, a value of 0.2 is used to binarise the mean FA skeleton and create the skeleton mask required for the statistical analysis. This value can be altered by using the --skeleton_thr
argument.
By default, all generated files will have the tbss_
prefix. This prefix can be altered using the --output_pre
option.
A typical example application can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --mat /folder/path/design_matrix.mat \ --con /folder/path/design_contrast.con
Note that if the --no_randomise
option is specified the --mat
and --con
options do not required to be specified. In this case, a typical command can be:
python perform_dti_tbss_cross_sectional.py \ --input_img /folder/DTI_img0.nii.gz /folder/DTI_img1.nii.gz [...] /folder/DTI_imgN.nii.gz \ --output_dir /folder/path/output_folder \ --output_pre new_prefix_ \ --no_randomise
The output, if the design contrast and matrix are specified, encompass:
- <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK
- <prefix>mean_fa_skeleton.nii.gz -- Skeleton of the mean FA map
- <prefix>mean_fa_skeleton_mask.nii.gz -- Binary skeleton of the mean FA map
- <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton
- <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton
- <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton
- <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton
- randomise outputs
If the --no_randomise
option is used, the outputs are:
- <prefix>mean_fa.nii.gz -- Mean FA map generated from the input DTI using a groupwise approach with DTI-TK
- <prefix>mean_fa_skeleton.nii.gz -- Skeleton of the mean FA map
- <prefix>mean_fa_skeleton_mask.nii.gz -- Binary skeleton of the mean FA map
- <prefix>all_fa_skeletonised.nii.gz -- 4D image containing all FA maps masked using the FA skeleton
- <prefix>all_md_skeletonised.nii.gz -- 4D image containing all MD maps masked using the FA skeleton
- <prefix>all_rd_skeletonised.nii.gz -- 4D image containing all RD maps masked using the FA skeleton
- <prefix>all_ad_skeletonised.nii.gz -- 4D image containing all AD maps masked using the FA skeleton
Note that for all 4D images, the order of the images is identical to the order specified with the --input_img
argument.
In order to run the statistical analysis independently, see the FSL randomise user guide page.
Various advices
Martina and Kirsi to have a go here.