Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation

[Yang et al. 2014, Comp Med Imaging and Graphics]

Gustavo Sato dos Santos

IGI Journal Club
23.10.2014
Motivation

Goal: Surgical navigation for minimally-invasive fetal surgery

Disadvantages of other tracking methods
- Optical: line-of-sight between tracker and markers
- Electromagnetic (EM): prone to noise - electronic devices in OR
- EM tracker + inertia measurement unit (IMU): issues with tracking initialisation, drift errors, accuracy
- Vision-based (Structure-from-Motion): not suitable due to unpredictable amniotic fluid, need to minimise illumination

Approach
- Initial camera position by ultrasound image-based localisation;
- Vision-based tracking
• **Ultrasound**: Hitachi ProSound α10 w/ 3D tilt-scanning convex sector transducer
 - mounted on rigid bracket (to minimise motion artefacts)
• **Endoscope**: Shinko Optical, 5.4mm diam. rigid endoscope, Xenon light source
• **Translation stage**: Sigma Koki, 4 μm/pulse resolution, 1 μm precision
Workflow

1. **U/S Image-based Initialization:** Register frame $k=1$ to scene.
2. **Feature Matching:** Between frame $(k-1)$ and k.
3. **2D-3D Point Correspondence:** Through sub-pixel depth map and labeled interest points.
4. **Pose Estimation:** Solve position of camera at frame k with EPnP.
U/S image-based initialisation

- Scene geometry acquired by 3D ultrasound imaging
 - Manual selection of placenta ROI;
 - Thresholding with iso-value → meshed surface model (50,000 vertices)
- Camera position acquired by localising fiducial (8 cm length, 0.3 cm diam.)
 - Prior fiducial-camera calibration (f → c transformation)
- Localisation error ≈ 1.32 mm
- Low acquisition rate, multiple sampling required for robustness
Underwater camera calibration

Optical properties of medium → intrinsic parameters of camera

• Camera pre-calibrated in saline solution used for experiments
 • Camera calibration toolbox for Matlab (Bouguet JY, 2004)

• Images corrected for radial and tangential lens distortions
 • Brown-Conrady model (Brown DC, *Photon Eng* 1971)
Inter-frame feature matching

Speed-Up-Robust-Features (SURF) algorithm [Bay et al., *Comput Vis Image Und* 2008]

- Scale and rotation invariant features
- FAST-Hessian feature detection, 64-element descriptor representing distribution of Haar-wavelet responses of feature neighbourhood
- Robust even in scenes with poor texture (important for tissue imaging)
- Outlier removal: RANSAC algorithm
- **Result**: 10-30 reliable feature matches (20 required for subsequent processing)
Inter-frame feature matching

Phantom

Ex-vivo monkey placenta

Texture conditions:

(a) Desirable

(b) Moderate

(c) Poor
2D-3D point correspondence

Mapping image coordinates \((i_p,j_p)\) to 3D coordinates \((x_p,y_p,z_p)\)

- Project 3D vertices of ultrasound image model to the camera plane to obtain their image coordinates:

\[
k^{-1}z^* \left(k^{-1} \begin{pmatrix} i & j & 1 \end{pmatrix} \right)^T = K \left(k^{-1}R_u \mid k^{-1}t_u \right) u \left(x \ y \ z \ 1 \right)^T
\]

- Delaunay triangulation of points \((i,j,k^{-1}z)\) \(\rightarrow\) dense depth map \(Z(i,j)\)
- 3D camera-centric coordinates of interest points:

\[
k^{-1}p_l = \left(k^{-1}(i_p - i_o) \cdot \frac{k^{-1}Z(i_p,j_p)}{f_x}, \ k^{-1}(j_p - j_o) \cdot \frac{k^{-1}Z(i_p,j_p)}{f_y}, \ k^{-1}Z(i_p,j_p) \right)
\]

\((i_0,j_0)\) and \((f_x,f_y)\): principal point and focal length from \(K\)
2D-3D point correspondence

3D interest points are updated every frame, according to matching features across two adjacent images.
Pose estimation

Pose estimation as Perspective-n-Point (PnP) problem

• Better accuracy and stability than Direct Linear Transformation (DLT)
 • non-iterative
 • solves coordinates of \(M=4 \) virtual control points \(\alpha = \{q_1, \ldots, q_M\} \)
 \[
 k z_i \cdot \left(k \begin{pmatrix} i_l & j_l & 1 \end{pmatrix}^T \right) = K \sum_m \lambda_{lm} c q_m
 \]
 \(\lambda_{lm} \): homogeneous barycentric coordinates summing to one

• Control points \(\mathbf{q} \) consist of the centroid of interest points \(\mathbf{p} \) and another 3 points that align closely to the principal direction of \(\mathbf{p} \)
• Computational time: \(O(n) \)
• Performs well even with noisy non-fixed interest points
Pose estimation

EPnP implementation. Pink surface = placental scene geometry; textured patch = camera views projected onto constructed surface model.
Overview of workflow

- Construct Z-map: $k^{-1}Z(i, j)$
- Recover Depth of Interest Pts.: $k^{-1}Z(i_p, j_p)$
- uP_i
- $k^{-1}(i_p', j_p)$, $k(i_p', j_p)$
- Correspond 2D-3D: (i', uP_i)
- Match Features
- Pose Est.: $uT_{c,k}$
- Ultrasound Image-based Initialization
- $uT_{c,k-1}$
- uP: Vertices of scene geometry in {u}
- $uT_{c,k}$: {c} relative to {u} at frame k
- uP_i: 3D coordinates of interest points in {u}
- i' or $k(i_p', j_p)$: Pixel coordinates of matched features

14
Results: phantom study, controlled trajectory

Each processing frame was at an interval of 10 acquisition frames (approx. 7s). Total displacement = 15-25 mm.
Results: phantom study, controlled trajectory

Each processing frame was at an interval of 10 acquisition frames (approx. 7s). Total displacement = 15-25 mm.
Results: phantom study, freehand trajectory

In the trajectory of approx. 30 mm, the mean absolute error was 2.69 mm in the 30 processed frames (300 acquired frames in 10 s).
Results: ex vivo study, static estimation

- Analysis of 100 estimations (5 positions x 20 frames)
- Validation against optical tracking, which has ~0.17 mm error
- Errors larger than phantom validation of static estimation
Results: effect of relocalisation (phantom)

- Ultrasound image-based delocalisation at 200th frame of 400-frame video
- Rectification of cumulative errors in vision-based tracking
- Final positional error reduced from 11.35 mm to 4.61 mm over total displacement of 45 mm
Results: computation time

• On a workstation with Intel Core i7-2600 3.4 GHz processor
Contributions / Future work

- Approach essentially vision-based, augmented with scene geometry information from ultrasound
- Relocalisation corrects cumulative errors or tracking failures
- Need to check performance under conditions closer to clinical setting (various kinematics, scene geometries, and illumination)
- Limitations in quality of endoscopic images can be addressed by:
 - fluorescence endoscope;
 - ultra-high sensitive endoscopic camera;
 - hyperspectral imaging of placental vasculature
- Ultrasound image artefacts lowered accuracy in the ex vivo study