
Clinical software
design

Tom Doel

Why good design?

• Design is fundamental to the usability and
reusability of software.

• Much of the software we develop will be used by
others, whether researchers or clinicians.

• They will usually have a very specific goal in mind.

• Good design can help them achieve this goal with
more efficiency and greater accuracy.

User experience (UX)

• The visual design - look and feel of the application

• Workflow - the procedures a user follows to achieve
their goal

• Visual design is more than just a marketing and PR
exercise

• Example: the London Underground“roundel” was
created to help passengers distinguish station
names from advertising

• The 1933 “electrical circuit” London Underground
map by Harry Beck has less information than a
geographic map, but makes it is easier to navigate. It
is the basis of most metro system maps used today

Do I need to think about design

• Yes - up to a point

Academic research
Kn

ow
le

dg
e

ga
in

ed

Research time

Software design
Ef

fic
ie

nc
y

of
 d

es
ig

n
/

ea
se

 o
f u

se

Development time

What does your user want?

xkcd

80/20
• Other people will use only some of your software’s features

• “80%” used less often

• often the most interesting and challenging areas

• should be the focus of your research effort

• “20%” used most often

• often operations that are “routine” or “solved”

• should be the focus of your design effort

• It’s not worth spending much design effort on little-used features, even if
they are the most interesting

Example - design for researchers

How to design a GUI
• Think about existing designs - they will be familiar to

users

• …but don’t feel constrained to follow the same design

• GUI designers (e.g. QT Designer, Guide, …) are useful
for prototyping and small, simple applications

• … but they are difficult to maintain and produce poor
code

• Better to use a good GUI toolkit and layout manager.

Use of whitespace to highlight patient name

Labeled icons,
current tool
highlighted

Simple design elements

Quick load of
different
datasets

Thoughts when using
medical software

Lunch

Am I following the software
procedure correctly? How do I treat

my patient?

Lunch

What other cool
 features could I add?

Oh, that's a bug

Is my algorithm
working correctly?

What clinicians are
thinking about

What software engineers
are thinking about

• What someone else wants from your software will
be very different from what you want from it.

• They will usually have a very specific purpose in
mind and will focus their attention on that.

Drew T, Võ ML, Wolfe JM,, Psychol Sci. 24(9):1848-53, 2013.

• Don’t expect your users to validate their results in
the same way you do!

• Clinical users are happy to follow complex
workflows but they are not going to think much
about how your algorithm works and how to check
it is doing the right thing.

• If you need the user to perform some kind of
validation (e.g. visual checks on a segmentation
result), you need to make this absolutely explicit.

Icons

@TechnicallyRon

• Visual elements such as icons rarely help to explain the function
of software…

• …but they do provide useful visual clues for performing tasks
that the user has already learned.

• Most software is not intuitive. It only feels intuitive because you
have already learned how to use it.

• Design can’t remove the learning element, but it can make it
easier.

• Even with good design, you still need to teach someone how to
use your software. The best was to do this is in person.

The myth of intuition

Don’t annoy your users

This is not OK!
At the very least, change the button to “Close”

Error messages

• Only include information that is useful to the user.

• Tell them what they need to do to fix the error.

• Don’t include any details of the error. Debugging
information and stack traces should be written to a
log file

• Do you really need to ask the user a question?

• In most cases the answer is no. It is usually possible to “design
away” the question. For example:

• Automatically save results instead of asking the user;

• Store state between sessions so closing the application won’t lose
any data;

• Save results to a sensible, consistent location instead of
prompting the user for a directory.

• If you can remove all questions, then your algorithm can be
automated and scripted.

Don’t ask questions!

Optimisation

– Donald E. Knuth, ACM Journal Computing Surveys 6(4): 268, 1974.

“We should forget about small efficiencies, say
about 97% of the time: premature optimization

is the root of all evil.”

– William Wulf, Proc. 25th National ACM Conf., pp. 791-97, 1972.

“More computing sins are committed in the
name of efficiency (without necessarily

achieving it) than for any other single reason -
including blind stupidity.”

Case study:
Faster loading

Radiologist launches
software Application starts (10s)

Fetch data from hospital
server (30s)

Load data into application
(30s)

Process and visualise data
(5s)

Application

Radiologist waits

Radiologist uses
application

Image credit: Radiologist in San Diego CA 2010 by Zackstarr

How do we
reduce this wait

time?

Look at the whole picture…

Radiologist launches
software Application starts (10s)

Fetch data from hospital
server (30s)

Load data into application
(30s)

Process and visualise data
(5s)

Application

Radiologist waits

Radiologist uses
application

Radiologist selects next
dataset from worklist (5s)

Radiologist examines
dataset using other viewer

(100s)

Radiologist launches
software

Application starts invisibly
(10s)

Fetch data from hospital
server (30s)

Load data into application
(30s)

Process and visualise data
(5s)

Application

Radiologist uses
application

Radiologist selects next
dataset from worklist (5s)

Radiologist examines
dataset using other viewer

(100s)

Make application visible
(0.1s)

Run application invisibly in background,
resulting in instant response - preprocessing

99.9% effective speedup with
zero code optimisation

• Good code architecture and good design are the
best ways to good performance.

• Don’t optimise unless you absolutely have to.

• If you really do need to optimise, use a profiling tool
- code bottlenecks often aren’t where you expect!

• If you have to sacrifice design or code quality for
performance reasons, you are probably
approaching the problem in the wrong way.

Commercialisation

• Research funding will usually only take you to a
prototyping or clinical trial stage.

• If you want to see your software in widespread
clinical use, the typical route is creating a spinout.

Funding Your code

Clinical partners

Regulatory approval

Commercialisation

Startup company

Patents

Final thoughts
• Don’t try and build an application that does everything. Focus on

the “killer feature” and design it well.

• Think about who will use your software. Not hypothetical future
users, but people you know and work with.

• Understand their use-case, from beginning to end.

• Watch people using your software. Think of easy ways you can
make it more efficient for their task in hand.

• Don’t over-design or over-optimise.

• Keep your code clean and modular. This will pay dividends in the
future.

Thanks
t.doel@ucl.ac.uk

mailto:t.doel@ucl.ac.uk

