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Abstract. In this work we propose a novel Gaussian process-based
spatio-temporal model of time series of images. By assuming separability
of spatial and temporal processes we provide a very efficient and robust
formulation for the marginal likelihood computation and the posterior
prediction. The model adaptively accounts for local spatial correlations
of the data, and the covariance structure is effectively parameterised by
the Kronecker product of covariance matrices of very small size, each
encoding only a single direction in space. We provide a simple and flexi-
ble framework for within- and between-subject modelling and prediction.
In particular, we introduce the Hoffman-Ribak method for efficient infer-
ence on posterior processes and its uncertainty. The proposed framework
is applied in the context of longitudinal modelling in Alzheimer’s dis-
ease.We firstly demonstrate the advantage of our non-parametric method
for modelling of within-subject structural changes.The results show that
non-parametric methods demonstrably outperform conventional para-
metric methods. Then the framework is extended to optimize complex
parametrized covariate kernels. Using Bayesian model comparison via
marginal likelihood the framework enables to compare different hypothe-
ses about individual change processes of images.

1 Introduction

Modelling longitudinal changes in organs is fundamental for the understanding of
biological and pathological processes. For instance the development of a spatio-
temporal model of disease progression in Alzheimer’s disease (AD) from time
series of magnetic resonance images (MRIs) would be highly valuable for the
fundamental understanding of the disease process, for diagnostic purposes and
individual predictions, and for testing the efficacy of disease modifying drugs in
clinical trials.
? Joint first author.

?? Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report.
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The consistent modelling and prediction of spatio-temporal changes in lon-
gitudinal MRI is still an important challenge from both methodological and
computational perspectives. In fact, flexible modelling instruments are required
in order to robustly capture meaningful pathological accelerations specific to sen-
sitive brain regions. Moreover, since a biological model of local brain changes is
often unknown, it is important to develop optimal models in terms of statistical
complexity.

Many of the previous works on spatio-temporal modelling of image time series
are based on non-linear image registration, describing signal differences between
images as local spatial transformations [1,2,3,4]. However, statistical inference
in registration models is often limited, due to the computational complexity,
and since image-registration is generally not flexible enough to perform model
comparisons and clinical prediction, to account for covariates and for the within-
and between subjects heterogeneity.

A statistical focus on the modeling of image time series is commonly pro-
vided by parametric linear modelling frameworks (GLM) [5]. However, GLM
approaches are often limited by the choice of arbitrary model complexity and spa-
tial resolution at which the data is analyzed. Even though flexible non-parametric
models have been proposed for the analysis of spatio-temporal signals in brain
images [6,7], their computational complexity still prevents the straightforward
application in time series of high-resolution MRIs. Non-parametric Gaussian pro-
cess (GP) models have emerged as a flexible and elegant Bayesian approach for
prediction and modelling in manifold applications [8], and have been recently
successfully introduced to the field of neuroimaging, e.g. in the context of single-
case inference in aging [9]. However, the application of GPs to the voxel-wise
modelling of image time series is to date very challenging, since the specification
of the joint covariance structure of the image features is in general computation-
ally prohibitive.

In this work we introduce a generative model of spatio-temporal changes
based on GPs, to provide a flexible and computationally efficient approach to
the analysis of aligned image time series by accounting for spatial and temporal
correlation. In particular, by assuming a local spatial correlation model and the
separability between spatial and temporal changes, we introduce a very efficient
formulation based on a covariance structure parameterized by the Kronecker
product of small size covariance matrices [10]. The proposed model extends GLM
approaches by providing a flexible and efficient statistical tool for the analysis
of image features from spatially aligned time series, for instance by allowing
statistical inference on the model parameters.

The paper is organized as follows. In Section 2 we propose our generative
model of longitudinal changes in image time series, while in Section 3 we pro-
vide computationally tractable optimization and prediction schemes. We also
introduce a novel computational scheme based on the Hoffman-Ribak method
for the statistical inference in high dimensional GP-based spatio-temporal mod-
els. Finally, in Sections 4 and 5, we apply the model in the context of longitudinal
data from from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for 1)
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within-subject modelling and prediction of local and regional brain longitudinal
changes, and 2) group-wise joint modelling of local ventricle growth rates based
on socio-demographics, genetic factors, and clinical scores.

2 A generative model for within-subject image time
series

Let u = (x, y, z) be the 3-dimensional spatial coordinate system and t the tem-
poral dimension. We consider the image time series I as a discretely sampled
spatio-temporal signal of dimensions N ×N ×N ×NT , where N is the dimen-
sion of the sampling grid on a single spatial axis, and NT is the number of time
points3. In the following sections we represent the image time-series I as a single
dimensional array of dimensions N3NT . We model the image time series I(u, t)
as a realization of a latent spatio-temporal process f(u, t) with additive noise:

I(u, t) = f(u, t) + ε(u, t) . (1)

The true signal will be modelled as a GP with zero mean and covariance Σ,
while ε is assumed to be i.i.d. Gaussian distributed measurement noise ε(u, t) ∼
N (0, σ2). Here we first assume that spatial and temporal processes are separable,
and thus that the covariance matrixΣ can be factorised in the Kronecker product
of independent spatial and temporal covariance matrices: Σ = ΣS ⊗ΣT .

This is a valid modeling assumption when the temporal properties of the
signal are similar across space; for instance, when analyzing within-subject time
series of brain MRIs in AD the expected pathological change rates are generally
mild and slowly varying across the brain. Second, a central assumption made in
this paper is that the spatial dependencies of the signal are local, i.e. that the im-
age intensities are smoothly varying and correlated within a spatial neighborhood
of radius ls. We note that our assumptions about separability and stationarity
are compatible with the spatio-temporal correlation models commonly assumed
by registration-based approaches.

A reasonable choice for such a local spatial covariance structure is a nega-
tive squared exponential model ΣS(u1, u2) = λs exp(−‖u1−u2‖2

2ls
), where λs is the

global spatial amplitude parameter, and ls is the length-scale of the Gaussian
spatial neighborhood. We observe that such a covariance structure is stationary
with respect to the space parameters. Furthermore we can exploit the separa-
bility properties of the negative exponential function to note that given two
separate spatial locations u1 = (x1, y1, z1) and u2 = (x2, y2, z2) we have

ΣS(u1, u2) = λs exp(−
(x1 − x2)2

2ls
) exp(− (y1 − y2)2

2ls
) exp(− (z1 − z2)2

2ls
) .

For this reason the covariance matrix ΣS can be further decomposed as the
Kronecker product of covariance matrices of 1-dimensional processes: Σ = Kx⊗
3 For simplicity we focus on an even sampling across spatial directions, even though
the generalization of the proposed model to the uneven case is straightforward.
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Ky ⊗ Kz ⊗ ΣT . We observe that the model is here conveniently represented
by the product of independent covariances of significantly smaller size, and is
completely identified by the spatial, temporal and noise parameters. In particular
the proposed model is flexible with respect to the temporal covariance matrix
ΣT , which can be expressed in terms of complex mixed-effects structure, and
can account for covariates and different progression models. For instance, in this
work the matrix ΣT is first specified in order to model the temporal progression
observed in time series of images (Section 4), and then is used to model the
influence of anatomical, genetic, clinical, and sociodemographic covariates on
individual atrophy rates modelled by non-linear registration (Section 5).

3 Inference in Gaussian processes with Kronecker
structure

The GP-based generative model with Kronecker covariance structure outlined in
this work provides a powerful and efficient framework for prediction using image
time series. Here we provide the main results concerning the marginal likelihood
computation, the hyper-parameter optimization and the posterior prediction.

Let (UKx
, SKx

= diag(λx1 , . . . , λ
x
N )) and (UT , ST = diag(λt1, . . . , λ

t
NT

)) be
the eigenvectors and eigenvalues associated to the one-dimensional spatial and
temporal covariance matrices Kx and ΣT . This eigendecomposition problem
can be easily and efficiently solved beforehand offline. We further introduce the
shortform notation

⊗
A = Ax ⊗Ay ⊗Az.

Log-Marginal Likelihood. The marginal likelihood of the model (1) is the
following:

logL = −1

2

∑
i,j,k,l

log(λxi λ
y
jλ

z
kλ

t
l + σ2)− 1

2
VI
T (
⊗

SK ⊗ ST + σ2Id)−1VI + const ,

(2)

with const = −N
3NT

2 log(2π), VI = vec
[
(UTKz

⊗ UTT )Ĩ(UKx
⊗ UKy

)
]
, and where

Ĩ is the matricization of I into a 2 dimensional matrix of dimension N2×NNT ,
and λxi , λ

y
j , λ

z
k and λtl are the eigenvalues of respectively Kx,Ky,Kz and Σt. The

computation of the vector VI requires the storage and multiplication of matrices
of relatively small sizes, respectively N2 × N2, N2 × NNT and NNT × NNT .
The product (

⊗
SK ⊗ ST + σ2Id)−1VI can be finally computed as the solution

of the linear system (
⊗
SK ⊗ST + σ2Id)X = VI , which is straightforward since

(
⊗
SK ⊗ ST + σ2Id) is diagonal.



5

Hyperparameter optimization. The derivative of the log-likelihood (2) with
respect to the model parameters θ is:

d

dθ
logL = −1

2
Tr

(
(
⊗

K ⊗ΣT + σ2Id)−1
d

dθ
(
⊗

K ⊗ΣT + σ2Id)

)
− 1

2

d

dθ
IT (
⊗

K ⊗ΣT + σ2Id)−1I .

(3)

It can be shown that formula (3) can be efficiently computed with respect to each
model parameters. For instance, the gradient with respect to the noise parameter
can be expressed in the form:

d

dσ2
logL = −1

2

∑
i,j,k,l

(λxi λ
y
jλ

z
kλ

t
l + σ2)−1 +

1

2
VI
T (
⊗

SK ⊗ ST + σ2Id)−2VI .

(4)

Prediction. A major strength of a GP framework for image time series is
that it easily enables probabilistic predictions based on given observations. The
proposed generative model allows us to consider the predictive distributions of
the latent spatio-temporal process at any testing locations u∗ and timepoints t∗.
Given image time series I(u, t), we now aim at predicting the image I∗ at N∗ ×
N∗T testing coordinates {u∗, t∗}. Let us define ΣI,I∗ = Σ(u, t, u∗, t∗) the cross-
covariance matrix of training and testing data, and ΣI∗,I∗ = Σ(u∗, t∗, u∗, t∗) the
covariance evaluated on the new coordinates. The joint GP model of training
and testing data is:

(
I(u, t)

I∗(u∗, t∗)

)
∼ N

[(
0
0

)
,

(
Σ + σ2Id ΣI,I∗

ΣI∗,I ΣI∗,I∗ + σ2Id

)]
, (5)

and it can be easily shown that the posterior distribution of I∗ conditioned on
the observed time series I and parameters θ is [8]:

I∗|I, {u∗, t∗},θ ∼N
(
µ∗, Σ∗

)
, where µ∗ = ΣI,I∗Σ

−1I

and Σ∗ = ΣI∗,I∗ −ΣI,I∗Σ−1ΣI∗,I + σ2Id .
(6)

From the practical perspective, we notice that by definition the new covariance
matrices still have a Kronecker product form: ΣI,I∗ = Kx,x∗ ⊗Ky,y∗ ⊗Kz,z∗ ⊗
Σt,t∗ , and ΣI∗,I∗ = Kx∗,x∗ ⊗Ky∗,y∗ ⊗Kz∗,z∗ ⊗ Σt∗,t∗ . The predicted mean µ∗
at coordinates {u∗, t∗} is then

µ∗ =
(
Kx,x∗UKx

⊗Ky,y∗UKy
⊗Kz,z∗UKz

⊗Σt,t∗UT
)
(
⊗

SK ⊗ ST + σ2Id)−1VI ,

which can be computed efficiently by noting that the matrix to be inverted is
diagonal and by using the product rule of the Kronecker operator. While the pos-
terior form (6) can also be used to evaluate the posterior marginal covariance,
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certain considerations are necessary for a tractable approach. Indeed, the covari-
ance matrix Σ∗ is computed from Σ,ΣI∗,I∗ and ΣI∗,I , which are evaluated on
different sets of spatial and temporal coordinates. In particular, the Kronecker
structure is lost and in the absence of further assumptions the matrix Σ∗ must
therefore be explicitly computed, generally leading to impractical solutions.

Hoffman-Ribak method for posterior sampling. We propose to compute
the sample distribution of (6) using the Hoffman-Ribak method (HR) introduced
in the late 1990s in the astrophysics literature [11]. Given the Gaussian distri-
bution (5) partitioned into training (observed) and testing (unobserved) compo-
nents, the HR method provides a computationally efficient and exact algorithm
for sampling from (6) consisting of the following two steps:

– Sample a random observation (Y, Y ∗) from the joint distribution (5),
– Compute a sample Z of the marginal posterior (6) according to Z = Y ∗ +
ΣI∗,I(Σ + σ2Id)−1Y.

Despite its simple formulation, the HR method cannot be straightforwardly ap-
plied in our case as sampling from the very high dimensional joint distribution is
generally prohibitive. Therefore, instead of focusing on predicting time series at
arbitrary spatial and temporal coordinates, we provide here an efficient scheme
for spatio-temporal prediction at arbitrary time points T ∗ = {t∗} evaluated
in the same spatial coordinates of the training image time-series I. Under this
assumption the matrices Σ,ΣI∗,I∗ and ΣI∗,I differ in the temporal part only,

Σ = ΣS ⊗ΣT + σ2Id; ΣI∗,I∗ = ΣS ⊗ΣT∗,T∗ ; ΣI∗,I = ΣS ⊗ΣT∗,T + σ2Id,

and it is simple to show that the joint covariance is Σjoint = P (ΣS ⊗ ΣT j +

σ2Id)PT , where P is a structured permutation matrix, and ΣT j =
( ΣT Σt,t∗

Σt∗,t Σt∗,t∗

)
.

A sample Z from the joint distribution can thus be easily computed as Z =
P (UΛ)X, where X is a standard multivariate normal distributed vector, and
UΛ2UT is the eigen-decomposition of the covariance (ΣS ⊗ΣT j + σ2Id). Eigen-
decomposition and matrix multiplication can be efficiently computed by virtue
of the properties of the Kronecker product.

In the following sections, after validating the proposed framework in a con-
trolled setting, we provide a modelling application in the context of longitudinal
modelling in AD.

4 Model Validation

Estimation of the Spatio-temporal Properties in Synthetic Data. Here,
we test the ability of the proposed GP model to correctly estimate the underlying
spatial and temporal properties prescribed in synthetic data. We chose a time-
series of brain MRIs composed of 6 aligned longitudinal gray matter (GM) seg-
ment images of an example ADNI patient, and we applied Gaussian smoothing to
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obtain synthetic samples of a spatio-temporal process with predefined spatial cor-
relation and signal to noise ratio. Moreover we generated synthetic longitudinal
progressions of increasing temporal complexity following respectively voxel-wise
linear, quadratic and cubic functions of time estimated through a general linear
model (GLM). Furthermore, longitudinal changes in the synthetic time series
were modelled with the proposed GP model. We applied a squared exponential
model for the temporal covariance parameterized by the temporal length-scale
lt. A maximum-a-posteriori (MAP) estimate of the parameters was obtained
by using Gauss-Newton optimization scheme of the log-hyperparameters, us-
ing multivariate uninformative Gaussian hyperprior with log-hyperparameters
µh = [−2,−2, 0, 3] and Σh = diag([5, 5, 1, 5]) for respectively (σ2, ls, λs, lt).

Table 1 shows the relationship between the spatio-temporal properties of the
synthetic data and the MAP estimates of the GP parameters. Noticeably, the
estimated spatial length-scale closely resembles the global smoothness parameter
of the synthetic data, adaptively accounting for image smoothness properties.
Additionally, we observed that the estimated temporal length-scale decreased
when modeling longitudinal progressions of higher order models. Thus, the model
also correctly denotes the increased complexity of the temporal changes.

Spatial smoothness (mm) ls σ2 λs

0 0.09 9e-6 0.7
0.5 0.81 5e-6 0.64
1 1.2 3e-6 0.53
2 2.3 1e-6 0.5
3 3.3 3e-10 0.48
4 4.3 7e-11 0.47

Temporal progression lt
(log-values)

linear 4.3
quadratic 1.79
cubic 1.72

Table 1: Estimation of the global spatial and temporal properties. The esti-
mated spatial length-scale ls closely correspond to the global smoothness of the
synthetic data, while the noise term and the signal amplitude decrease with
increasingly smoother data. The estimated temporal length-scale is inversely
proportional to the underlying complexity of the temporal progression.

Within-Subject Modelling and Prediction of Longitudinal Changes.
We chose high-resolution longitudinal images of 10 AD patients, 10 patients
with mild cognitive impairment (MCIc) subsequently converting to AD, and
10 healthy controls from the ADNI dataset. AD patients and healthy controls
(HC) had 4 images per participant, corresponding to baseline, 6 months, 1 and
2 years scans, while for MCIc patients additional images corresponding to 3
or 4 years were available. The images were processed according to established
procedures consisting of joint bias correction, tissue segmentation, alignment to
the within-subject average anatomy, and non-linear normalization to a group-



8

wise anatomical reference [12]. The final image size was of 1003 cubic voxels with
isotropic resolution of 1.5mm.

Fig. 1: Group-wise average absolute differences between extrapolated images and
real ones. The GP model was trained on scans from 3 time points corresponding
to baseline, 6 months and 1 year. Errors were generally found to be proportional
to the extrapolation time.

The longitudinal changes in the resulting time series of processed gray matter
density maps were modelled according to the proposed GP model. The model
was estimated for each subject by using 3 training images corresponding to
baseline, 6 months and 1 year scans. In order to capture meaningful non-linear
trends during disease progression to AD, we also applied the GP model in the
MCIc group by using 4 and 5 training images, corresponding to the time range
from baseline to respectively 2 and 3 years follow-up.

We applied the optimization scheme illustrated in Section 4 while impos-
ing an informative prior on the temporal length-scale parameter with log-mean
and -variance of 3 and 0.1 respectively. This choice was done in virtue of the
experimental results illustrated in Table 1 in order to promote a moderately
non-linear behaviour of the GP model, and at the same time avoid overfitting
on the limited number of within-subject observations. The resulting computa-
tional time for the parameter estimation was of about 5 minutes per subject on
a standard PC (with 2.6 GHz, QuadCore, 16GB RAM). The predictive accu-
racy of the model was then tested by voxel-wise comparison of the extrapolated
image series with respect to the corresponding ground truth follow-up images,
and compared with respect to a standard linear and quadratic voxel-by-voxel

AD HC MCI
N train points 3 3 4 5
GP 1.9 1.9 2.9* 2.5*
GLM linear 1.9 2 3.1 2.7
GLM quadratic 6.7 2.6 8.7 5.4

Table 2: Mean absolute error (averaged over the whole brain and subjects) be-
tween predicted extrapolated image and real one (values are scaled by a factor
1e3). The proposed GP model significantly outperformed predictions obtained
from GLM when trained on 4 and 5 time points, from baseline to 2-3 years
follow-up (* for statistically significant difference, p < 0.05, paired t-test).



9

model using within-subject GLM. The group-wise average voxel-wise absolute
differences between extrapolated images and real ones are shown in Figure 1.
Errors were generally found to be proportional to the extrapolation time. Table
2 shows that the results of the GP model are comparable to those obtained by
linear modelling when training on 3 time points only. However, the prediction
of the GP model significantly improves the linear one when using more training
points. This result indicates that the GP model is able to capture meaningful
accelerations of the time process when sufficient data is provided, while it stays
essentially linear otherwise. Figure 2 shows the mean hippocampal progression
and associated confidence interval from the posterior latent process for a MCIc
patient. We observe that the GP-based model of hippocampal loss is non-linear
and fairly predicts the acceleration of volume loss observed in the follow-up
testing images.

Fig. 2: Predicted hippocampal progression for a sample MCIc patient. The model
was estimated from 4 image time points (baseline to 2 years) in a bounding
region including the hippocampus. The longitudinal sample distribution (gray
dots) and mean prediction (red line) are estimated according to the marginal
GP posterior of Section 3 by using the Hoffman-Ribak method.

5 Application: Between-Subjects Prediction of Individual
Rates of Ventricle Growth using Multi-Kernel Learning

In this second application, we exploit the flexibility of our model to make covariate-
based predictions of individual rates of atrophy in elderly subjects. In contrast to
typical multivariate models which predict or classify scalar values, our GP frame-
work allows prediction of images. In particular, we here focus on predicting the
rate of volumetric growth in the lateral ventricle regions.

Firstly, we used computational morphometry to obtain the rates of atrophy
in a large sample from the ADNI longitudinal dataset. To obtain these features
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for training and testing, we used 1143 and 569 MRI scans of 206 and 105 elderly
subjects respectively (ages 59-91, age mean ± std: 76.0 ± 6.0 years). In order to
enable predictions across a broad range of clinical states, the sample was pooled
across clinical groups. It contained 111 healthy elderly and 108 subjects with
stable and 92 subjects with progressive MCI. After longitudinal registration, tis-
sue segmentation and inter-subject alignment [12], we calculated each subject’s
ventricle growth rate from registered CSF images using a linear model.

Secondly, using the preprocessed images as features we considered a special
case of generative model (1) to implement a prediction model based on indi-
vidual subject’s covariates, e.g. age, cognitive scores, etc. This is realized by a
different choice of covariance function ΣT compared to the above within-subject
application. In order to enable a prediction based on multiple available covari-
ate sets e.g. genes, clinical scores, etc. we used an additive multi-kernel learning
covariance

ΣT =

4∑
r=1

Kr, with Kr(c1, c2) = αr exp(−
1

2
(c1 − c2)TMr(c1 − c2)) (7)

using a sum of (up to four) squared exponential covariances Kr with amplitudes
αr, and c1, c2 denoting pairs of covariate vectors from each of (up to four) covari-
ate sets. The symmetric matrices Mr were chosen to be either MISO = `−2Id
or MARD = diag(`)−2. Like in typical GP regression applications, using (7) ex-
plicitly models covariance of (latent) observations f as a function of similarity of
inputs c (here the covariate vectors of subjects). That implements the idea that
subjects with similar covariates are expected to have similar rates of atrophy.
In particular, the choice of Mr = MISO parametrizes an isotropic covariance
assuming equal length-scale for different covariates of the same covariate set.
An alternative choice of Mr =MARD implements automatic relevance determi-
nation (ARD) with separate length-scales estimated for each variable. We com-
pared successively complex prediction models using (1) only global brain volumes
(tgmv, twmc, tcsv) or (2) additionally using demography (age, sex, education,
marital status, year of retirement), or (3) also including genetic risk in terms of
the number of ApoE4 allele and (4) finally also using the clinical neuropsycho-
logical test scores MMSE, ADAS, and CDR. The models (1) to (4) step-by-step

model ml - ISO ml - ARD mae - ARD
1 1.6697 1.6769 0.0059
2 2.4309 2.0249 0.0058
3 2.4356 2.0513 0.0080
4 2.2768 2.4434 0.0057

Table 3: Log marginal likelihood (ml) of Gaussian process covariance usingMISO

andMARD for prediction of ventricle growth rate maps based on sets of subject’s
covariates. Hyperparameters were optimized in 206 subjects training sample.
Column 3 shows mean absolute error (mae) averaged across voxels in prediction
of unseen 105 test subjects from independent test sample.
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increased the amount of subject-specific information to predict maps of rates of
ventricle growth. Comparison across models was performed using log marginal
likelihood balancing model fit and model complexity with varying numbers of
hyperparameters. We found an increasing marginal likelihood for more complex
models using ARD covariance (see Table 3) and decreased model evidence for
model 4 under ISO covariance. Highest marginal likelihood was observed for
ARD model 4 including all predictors. This trend is also reflected in terms of
mean absolute error maps demonstrating increased prediction accuracy and gen-
eralization ability during testing in an independent test sample of 105 subjects
(Figure 3A). Results also showed a correlation of up to 0.52 of predicted and
true growth rates (Figure 3B).
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Fig. 3: (A) Mean absolute error (MAE) of prediction maps in an independent
testing sample of 105 subjects show increasingly better predictions using more
predictor sets and Gaussian process models with ARD. (B) Predicted over true
growth rates using model 4 in an example voxel showing correlation of r = 0.52.

6 Conclusions

We presented a novel framework for modelling and prediction of spatio-temporal
processes in image time series. It is flexible and computationally efficient thanks
to the proposed Kronecker structure of the covariance, and to the use of the
Hoffman-Ribak method for efficient sampling from the posterior. Our model
provided promising results when tested in very different experimental scenarios
concerning longitudinal modelling in AD, and opens the path to the effective use
of GPs for the generative modeling of neuroimaging data. The strength of the
framework relies on assuming separability of spatial and temporal processes. We
show that this assumption leads to meaningful results when applied to the longi-
tudinal modeling in AD, where the expected pathological changes are generally
mild and slowly varying across brain regions. This assumption might be relaxed
in future work in order to also model spatially varying processes that might
underlie biological progressions with different properties. It may be indeed pos-
sible to further extend the framework to allow non-stationary correlations and
noise models without compromising the computational efficiency, by accounting
for local smoothly varying stationary processes as previously proposed in geo-
statistics [13]. Finally, further extensions of the proposed work will be devoted
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to the group-wise non-parametric mixed-effect modeling of disease progression
in clinical cohorts such as ADNI, by exploiting the flexibility of the proposed
spatio-temporal covariance structure in accounting for subject and group-specific
progressions and confounders.
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