
Modelling Non-Stationary and Non-Separable
Spatio-Temporal Changes in Neurodegeneration

via Gaussian Process Convolution

Lorenzi Marco1, Gabriel Ziegler2, Daniel C. Alexander3, and Sebastien
Ourselin1 ?

1 Translational Imaging Group, CMIC, UCL, London, UK
2 Centre for Medical Image Computing (CMIC), UCL, London. UK

3 Wellcome Trust Centre for Neuroimaging, UCL, London, UK

Abstract. Modelling longitudinal changes in organs is fundamental for
the understanding of biological and pathological processes. Most of the
previous works on spatio-temporal modelling of image time series relies
on the assumption of stationarity of the local spatial correlation, and
on the separability between spatial and temporal processes. These as-
sumptions are often made in order to lead to computationally tractable
approaches to longitudinal modelling, but inevitably lead to an oversim-
plification of the complex spatial and temporal dynamics underlying the
biological processes. In this work we propose a novel spatio-temporal
generative model of time series of images based on kernel convolutions of
a white noise Gaussian process. The proposed model is parameterised by
a sparse set of control points independently identified by specific spatial
and temporal parameters. This formulation is highly flexible and can nat-
urally account for spatially and temporally varying dynamics of changes.
We demonstrate a preliminary application of our non-parametric method
on the modelling of within-subject structural changes in the context of
longitudinal analysis in Alzheimer’s disease. In particular we show that
our method provides an accurate description of the pathological evolu-
tion of the brain, while showing high flexibility in modelling and predict-
ing region-specific non-linearity due to accelerated structural decline in
dementia.

1 Introduction

Modelling longitudinal changes in organs is fundamental for the understanding of
biological and pathological processes. For instance the development of a spatio-
temporal model of disease progression in Alzheimer’s disease (AD) from time
? Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). As
such, the investigators within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found
at:www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
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series of magnetic resonance images (MRIs) would be highly valuable for the
fundamental understanding of the disease process, for diagnostic purposes and
individual predictions, and for testing the efficacy of disease modifying drugs in
clinical trials.

The consistent modelling and prediction of spatio-temporal changes in lon-
gitudinal MRI is still an important challenge from both methodological and
computational perspectives. In fact, flexible modelling instruments are required
in order to robustly capture meaningful pathological accelerations specific to
sensitive brain regions. Moreover, since a biological model of local brain changes
is often unknown, it is important to develop optimal models in terms of statisti-
cal complexity. Notably, the spatial dimensionality of MRI time series prevents
the straightforward implementation of classical multivariate statistical modelling
techniques and often leads to computationally intractable solutions.

We can identify two main approaches to spatio-temporal modelling of image
time-series in computational anatomy. The first one is based on non-linear image
registration, describing signal differences between images as local spatial trans-
formations [1,2,3,4]. In non-linear registration the spatial changes are usually
modelled at a fixed spatial scale defined by the regularization energy at which
the transformation is optimized. The temporal modeling usually relies on the
definition of a specific model of temporal evolution, which is identified either
by fitting parametric progression models on geometric features of the transfor-
mation, or by choosing an opportune metric in the space of transformations to
characterize specific evolution models in the image space. The second one, usu-
ally identified as voxel-based-morphometry (VBM), is based on voxel-by-voxel
modelling based on parametric [5], or non-parametric regression frameworks [6].
Models are usually independently fitted for each voxel, and local correlation
is usually imposed by applying Gaussian convolution of the images with some
apriori kernel size.

The majority of the above mentioned approaches rely on important assump-
tions concerning the spatial and temporal processes. In fact, by either choosing
a global regularization energy in image registration, or a global smoothing pa-
rameter in VBM, we usually impose local stationary correlation models for the
spatial changes. Even though this assumption is often necessary to lead to com-
putationally tractable approaches, it inevitably leads to an oversimplification of
the complex spatial properties of the images, for example concerning regionally
varying smoothness, and image boundaries.

At the same time, by fitting global longitudinal models, either defined by
the registration metric, or by a fixed statistical model complexity, we assume
that spatial and temporal processes are separable, i.e. that the properties of the
temporal variation (for instance following a quadratic or linear behaviour) is
independent from the spatial locations. As before, this assumption often leads
to simplistic modeling solution, as the progression of the temporal changes in
organs is generally highly variable across spatial regions.

Non-parametric Gaussian process (GP) models have emerged as a flexible
and elegant Bayesian approach for prediction of continuous and binary vari-
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ables in manifold applications [7]. Recently, GPs were successfully introduced
to the field of neuroimaging, e.g. in the context of single-case inference in aging
[6]. Moreover, it was recently introduced in [8] a generative framework for the
modelling of image time series based on Gaussian process regression. This ap-
proach was however completely based on the assumption about stationarity and
separability of spatial and temporal processes.

In this work we propose a generative model of image time series based on
Gaussian processes (GPs), which is characterized by a covariance structure pa-
rameterized by a sparse set of control points defined in space and time. Since
each control point is governed by specific spatial and temporal parameters, the
proposed model is highly flexible and can naturally account for spatially and
temporally varying signal changes. The proposed model thus overcomes many
limitations of previous spatio-temporal modelling approaches.

The paper is organized as follows. In Section 2 we propose our generative
model of longitudinal changes parameterized by a sparse set of control points,
with details about parameter optimization and prediction. In Section 3 we then
provide a preliminary application of our non-parametric method on the mod-
elling of within-subject structural changes in the context of longitudinal analy-
sis in Alzheimer’s disease. In particular we show that our method provides an
accurate description of the pathological evolution of the brain, while showing
high flexibility in modelling and predicting region-specific non-linearity due to
accelerated structural decline in dementia.

2 Generative Model of Spatial Data Through Gaussian
Process Convolution

Let u and t be respectively the spatial and temporal coordinates. Given an image
time series y(s), s = (u, t), we assume a generative model for the spatio-temporal
variations:

y(s) = z(s) + ε, (1)

where ε Gaussian distributed spatial noise ε ∼ N (0, σ2
ε ), and where z is a (zero-

mean) Gaussian process (GP), identified by the associated covariance form Σ.
Following the idea introduced in [9], we model z(s) as the convolution of a
white noise process x(s) ∼ GP(0, σ2

xId), with a given kernel function k. More
specifically, the spatial process z(s) is identified by a sparse set of control points
defined in space and time, {wj = (uj , tj))}Nw

j=1, and associated parameters θj :

z(s) =
∑Nw

j=1 x(wj)k(s− wj |θj). (2)

Under these modelling assumptions, the generative model (1) assumes the form:

y = Kx+ ε, (3)

where K is the matrix of the spatial coefficients associated to the control points
Ks,wj

= k(s − wj |θj). The image time series y is therefore a realization of the
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following process:

y ∼ GP(0, Σ), with Σ = σ2
xKK

T + σ2
ε Id. (4)

The model (4) is completely identified by the measurement noise σε, by the white
process parameter σx, and by the control points wj with associated parameteres
θj .

We note that the size of the covariance matrix Σ is NuNt×NuNt, where Nu
is the number of voxels, and Nt is the number of temporal observations. For this
reason the naive approach to the modelling of (4) can easily lead to prohibitive
problems in term of storage and computations. In the following section we show
that the proposed kernel parameterization leads to computationally tractable
inference schemes whose complexity depends on the number of basis functions
solely.

2.1 Efficient Inference in Gaussian Process Convolution Models

The GP-based generative model with kernel structure outlined in this work pro-
vides a powerful and extremely flexible framework for prediction an inference
in image time series. Let θ = {σx, σε, (θj)Nw

j=1} be the set of parameters of the
model (4). In the following sections we provide the main results concerning the
marginal likelihood computation, the hyper-parameter optimization and the pos-
terior prediction.

2.2 Log-marginal likelihood

The log-marginal likelihood of model (4) is:

logL(θ) = −n2 log(2π)− 1
2 log |Σ(θ)| − 1

2y
TΣ(θ)−1y. (5)

In particular, the determinant and matrix inverse terms can be efficiently com-
puted by using well known matrix algebra properties:

|Σ(θ)| = |σ2
xK

TK + σ2
ε IdNw

| (6)

Σ(θ)−1 =
1

σ2
ε

IdNu
− 1

σ4
ε

K

(
1

σ2
x

IdNw
+

1

σ2
x

KTK

)−1

KT . (7)

We note that in this form both inverse and determinant operations are performed
on matrices of size Nw, which is magnitude smaller than NuNt.

2.3 Hyperparameter optimization

The derivative of the log-marginal likelihood (5) with respect to the model pa-
rameters θ is:

d

dθ
logL = − 1

2Tr
(
Σ(θ)−1 dΣ(θ)

dθ

)
− yTΣ(θ)−1 dΣ(θ)

dθ Σ(θ)−1y (8)
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It can be shown that formula (8) can be efficiently computed with respect
to each model parameters. For instance, the gradient with respect to the noise
parameter can be expressed in the form:

d

dσ2
ε

logL = −1

2
Tr
(
Σ(θ)−1

)
− yTΣ(θ)−2y (9)

= − σ2
x

2σ2
ε

(
Tr(KTK)− 1

σ2
ε

Tr(KTK

(
1

σ2
x

IdNw
+

1

σ2
x

KTK

)−1

KTK)

)
(10)

+
σ2
x

2σ2
ε

ATA, (11)

where

A =

(
K − 1

σ2
ε

K

(
1

σ2
x

IdNw
+

1

σ2
x

KTK

)−1

KTK

)−T

y.

We note that, as for the computation of the marginal likelihood, the above term
can be efficiently decomposed in the more convenient product of matrices of
lower dimension, thus leading to computationally tractable solutions.

2.4 Prediction

The proposed generative model allows us to consider the predictive distributions
of the latent spatio-temporal process at any testing locations u∗ and timepoints
t∗.

Given image time series I(u, t), we now aim at predicting the image I∗ atN∗×
N∗
T testing coordinates {u∗, t∗}. Let us define ΣI,I∗ = Σ(u, t, u∗, t∗) the cross-

covariance matrix of training and testing data, and ΣI∗,I∗ = Σ(u∗, t∗, u∗, t∗) the
covariance evaluated on the new coordinates. The joint GP model of training
and testing data is:

(
I(u, t)

I∗(u∗, t∗)

)
∼ N

[(
0
0

)
,

(
Σ + σ2Id ΣI,I∗
ΣI∗,I ΣI∗,I∗ + σ2Id

)]
, (12)

and it can be easily shown that the posterior distribution of I∗ conditioned on
the observed time series I and parameters θ is [7]:

I∗|I, {u∗, t∗},θ ∼N
(
µ∗, Σ∗

)
, where µ∗ = ΣI,I∗Σ

−1I

and Σ∗ = ΣI∗,I∗ −ΣI,I∗Σ−1ΣI∗,I + σ2Id .
(13)

3 Application: Longitudinal Brain Changes in
Alzheimer’s Disease

In this section we show an application of the proposed generative model to the
analysis of the individual longitudinal brain changes observable in image time
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Fig. 1: Observed and modelled image time series by using a grid of 25x25 control points.
The predicted progression provides a probabilistic description of the observed data at
the grid resolution.

series. We consider the model outlined in Equation (3), with kernel function k
associated to the control points {wj}Nw

j=1 identified by independent spatial and
temporal length-scale parameters θj = {θuj , θtj}:

k(s− wj |θj) = exp(−|u− uj |2/θuj ) exp(−|t− tj |2/θtj). (14)

With the proposed parameterization, the spatio-temporal process (3) is com-
pletely characterized by the sparse set of spatial and temporal parameters asso-
ciated to the set of control points. As we shall see in the following experiment,
these parameters describe the spatial and temporal complexity of the underly-
ing spatio-temporal signal, and thus they identify the non-stationary and non-
separable model of the observed image time series.

3.1 Data analysis and Results.

We selected a patient affected by mild cognitive impairment for which 6 images
were available, corresponding to observational time of respectively baseline, 6
months, 1, 1.5, 2 an 3 years.

The images were processed according to established procedures consisting of
joint bias correction, tissue segmentation, alignment to the within-subject aver-
age anatomy, and non-linear normalization to a group-wise anatomical reference
[10]. The final image size was of 1003 cubic voxels with isotropic resolution of
1.5mm.

Figure 1 shows an application of the proposed approach on the modeling
of the coronal slice including temporal regions, by using a grid of 25x25 basis
functions. We note that the predicted progression provides a description of the
observed data at the grid resolution.
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The fitted model parameters are shown in Figure 2, left. It is interesting to
note that they provide a description of the spatial and temporal complexity of the
observed time series. Indeed, the spatial complexity is higher (decreased spatial
length-scale parameter) in the cortical areas, while the temporal complexity is
higher in the temporal regions (decreased temporal length-scale). We also note
that the model variability is zero outside the brain areas (Figure 2, right).

Fig. 2: Fitted model parameters and model variance. We note that the model is capable
to adjust the parameters to the spatial and temporal complexity of the data. In par-
ticular, the spatial complexity is higher (decreased spatial length-scale parameter) in
the cortical areas, while the temporal complexity is higher in the temporal regions (de-
creased temporal length-scale). We also note that the model variability is zero outside
the brain areas.

The accuracy of the proposed approach in modelling the longitudinal changes
is shown in Figure 3, where we show the average longitudinal changes measured in
respectively temporal areas and thalami, two regions which are characterized by
different temporal complexity (Figure 2): the temporal length-scale parameters
of the temporal region are low (thus denoting high temporal complexity of this
area), while the ones of the thalami are associated to higher length-scale (low
temporal complexity). Indeed, the average progressions shown in Figure 3 show
an almost constant progression for the thalami, while the temporal area has an
accelerated atrophy process.

4 Conclusions

In this work we proposed a novel probabilistic approach to the modelling of non-
stationary, non-separable spatio-temporal processes, by means of kernel convolu-
tions of a white noise Gaussian process. The experimental results show that the
proposed modelling method leads to an accurate fit to the observed image time
series, while at the same time providing a rich description of the spatio-temporal
dynamics of the data, encoded by the learned spatial and temporal parameters.
Further extensions of the proposed work will aim at improving the computa-
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Fig. 3: Left. Modelled (red) and observed (blue) atrophy progressions. The model pro-
vides accurate fit, and shows that the temporal areas have higher temporal complexity
than the thalami, caused by the process of atrophy acceleration. Right. Reference areas
enclosing temporal region (red), and thalami (green).

tionally efficiency of the inferential process, in order to scale to the modelling of
high-dimensional time series of 3D images with several time points.
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